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ABSTRACT

This report derives from elementary principles the general equations of

motion for a missile utilizing a fixed-plane coordinate sy3tem, i.e., a co-

ordinate system with one axis constrained to lie in a given plane.

Included in the derivation are explicit expressions for introducing .iqd

and an alternate set of equations to be used when singularity conditions

are approached. Means are provided for automatically converting to the

alternate set of equations so that uninterrupted trajectory simulation can

proceed under all conditions. A complete discussion of initial conditions

is included.

The general equations can be used for flat or spherical, rotating, or non-

rotating earth cases.



INTRODUCTION

This report is part of a continuing program to give Picatinny Arsenal

a complete capability in the flight simulation of all types of projectiles

and missiles, whether ballistic or rocket-boosted, guided or unguided.

Contained herein is a rederivation, from elementary principles, and an

elaboration of the fixed plane coordinate system described in Reference 1,

"Trajectory Equations for a Six-Degree-of-Freedom Missile." In Refer-

ence 1, a list of only the basic equations unique to the fixed plane co-

ordina'e system is presented. This report completes this list and includes,

for the first time, a derivation for initial conditions, as well as an alter-

nate set of equations to be used when singularity conditions are approached.

Means are provided for converting to this set during flight simulation.

Finally, explicit equations for introducing wind into the equations of

motion are derived.

This alternate set of fixed-plane trajectory equations was required to

supplement (and, in many cases, replace) the existing equations utilizing

the missile-fixed coordinate system as derived in Reference 1. To be

explicit, the previous equations produced satisfactory trajectories for low-

spin projectiles, but were inadequate for the simulation of spin-stabilized

shells. The most obvious differences were in the large deflections accom-

panying most trajectories for high-spin projectiles, these being three or

four times as large as had been anticipated. Discussion of this matter

with personnel from the Naval Weapons Laboratory, Dahlgren, Virginia,

indicated the existence of a narrow band of permissible integration step

sizes (incremental time steps) whereby both truncation and round-off

errors are of acceptable magnitudes. It is possible that when forces and

moments are referred to a missile-fixed coordinate system (as was the case

in Reference 1), and high-spin rates are to be accounted for, this band of

acceptable time increments becomes even more narrow or perhaps non-

existent. Although this is not known with certainty, it provides the im-

petus for studying the fixed-plane coordinate system described in this

report. In particular, this coordinate system has one axis constrained to

lie in a given plane and, consequently, does not rotate with the missile.

To provide a working simulation and to determine whether this new co-

ordinate system alleviates the conditions producing unsatisfactory trajec-

tories, the equations derived in this report were programmed by the

Digital Applications Unit for the IBM 709 computer, Reference 5 contains

a description of the corresponding computer program.
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The equations again consider both flat and spherical, rotating and non-
rotating earth cases, and again make use of the Euler transformations
(as opposed to direction cosines) to express vector quantities in various
coordinate systems.

As before, guidance factors, motion of the earth along its orbit, launcher
effects, and asymmetric missiles are not included in the derivations.
These represent potential areas of extension of the present equations of
mot ion.

NOTATION

Unit vectors in each of the three orthogonal directions are represented
by k , ji, ki where subscript i denote., the coordinate system under con-
sideration. Components of vectors in each of these directions will have
two subscripts. The first subscript (X, Y, or Z) denotes a component
along the i, 1, k axis, respectively; the second subscript (I, E, etc.)
denotes the referencing coordinate system. Thus VXE is the component

of the vector V along the i axis of the E-coordinate system.

Arrows over vector quantities denote vectors of arbitrary magnitude,
bars over vector quantities denote vectors of unit magnitude.

Subscripted vectors other than the subscripts mentioned above are
enclosed in parentheses, i.e. (oIT).

-- .th
Finally denotes time differentiation of vectors relative to the t

dt
coordinate system, while a dot over a given variable denotes scalar dif-
ferentiation with respect to time.
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SYMBOL S

Vector 
Quantities

11 , , k,

iE' JE, kE

wik w kcoordinate systems
if 'H' k H

Iv, Jv,kv
Im p Im p k M

Angular velocity of (H) relative to (I)

Q Angular velocity of (E) relative to (1), i.e., angular velocity of
the earth about its axis

CAngular velocity of (H) relative to (E)

Angular velocity of (M) relative to (H)

-((aT) Angular velocity of (M) relative to (i)

w' Angular velocity of (V) relative to (E)

R Vector from center of earth to the current missile CG position

V Time rate of change of R. i.e., missile velocity

(Vw) Vector describing wind

IF Summation of forces acting on missile

Il Summation of moments acting on missile

]" Angular momentum of missile

9Vector giving direction of gravitational force exerted on missile

(Vr) Velocity of missile relative to the air

r Thrust malalignment vector

T Thrust vector

4



SYMBOLS (Cont)

m mass of rocket

lx longitudinal momer,! of inertia

ly transverse moment of inertia

0, 0, 9,10 Eulerian angles

0,01 Angles relating (H) to (V) coordinates

p Density of air

d Diameter of missile

k DA' k N' k F Aerod -namc coefficients

k H' k k Aerodvnamic, coefficients
41 6

r C Distance from nose of missile to CG

AkN Distance from nose of missile to normal center of pressure

AkM Distance from nose of missile to magnus center of pressure

g Gravitational acceleration

R rh Radius of earth

90 Gravitational acceleration at sea level

h Altitude of rocket

STSA Thrus malalignment angles

k Portion of thrust devoted to prnduce 'let torque

a, / Angl-s defining missile position

INY Magnitude of wind velocit%

6 ~Anitle defining direction of wind

A, 8, G, H Angles defining Initial conditiors
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SYMBOLS (Cont)

Denotes time differentiation

Denotes quantities referred to (V) coordinates

Denotes the vector cross product

PROCEDURE

Several coordinate systems are utilized in deriving the equations of
motion. They are tabulated here for later convenience.

il, Jt, k, Inertial coordinate system; origin (0) at the center of the

earth, k1 axis coincident with positive spin axis of the

earth, i axis coincident with 0' longitude, and 11 axis so

directed as to form a right-handed coordinate system.

iE, IE, kE Earth-fixed coordinate sy,. em; identical position as
i1, Jl, k, at time equal zero, but coordinates are to be fixed

to the earth.

iW, JW, kw Azimuthal coordinate system; this coo:dinate system is used
to introduce wind data into the equations of motion. The
origin of these coordinates is again at 0, the iv axis is

directed towards the missile CG, the kw axis is directed

towards the positive ipin axis o, the earth, and Jw is so

directed as to produce a right-handed coordinate system.

1 H JH' kH Fixed horizontal plane coordinate system; i,. axis along
missile longitudinal axis is directed from the centroid
towards the nose of the missile, jH is constrained to lie in

a horizontal plane, parallel to the 'TE . plane, and It is

directed as to produce a right-handed coordinate system.

6
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iv, J, kv Fixed vertical plane coordinate system; the iv axis is coin- "I

cident with the i H axis, the axis is constrained to lie per-

pendicular to the iE axis (i.e., remain in a specified vertical

plane), and thekv axis is so directed as to determine a right-

handed coordinate system.

iM, iM, k M Missile-fixed coordinate system; the iM axis is coincident

with missile longitudinal axis, the iM and kM axes are rigidly

attached to the missile to form a right-handed coordinate
sys tem.

The procedure will be divided into several sections, as outlined in the

Table of Contents, each describing a particular aspect of the equations of

motion, with the last section combining all that precedes it and serving

as a summary of the equations of motion. The first section will derive the

general equations of motion, and will include the necessary transforma-
tions between coordinate systems.

The General Equations of Motion

As usual, Equations 1 and 2, the basis for Newtonian mechanics, pro-

vide the foundaticn for the equations of motion.'

XF - L (1)
dt2

1 dl) (2)

dt

Strictly speaking Equation I should read:

, dlV *" d "R
dF . mV) m in 1 u4 Ur urn (1)

dt dt dt'

The latter term, urin, involves the amount of mass being expelled from the rocket system,
and the relative velocities of the rocket ard the exist gases, (a). This term is known as
the jet reaction and is considered aspart of the thrust, whose total makeup also includes

considerations of nozzle design, operating temperatures, and pressures. Equation V' uses

u in p!ace of the seemingly indicated V becaase the rocket system itself hasnot really

been defined in this presentation. The interested reader is referred to References 2 and

3 for a more complete discussion.



Here F and IL are summations of forces and moments acting on the mis-
• fsile, R is a vector from the center of the earth to the current CG (center of

gravity) position of the missile, and f is the total angular momentum of the
rocket.

Since Equations 1 and 2 are vector equations in three-dimensional
space, three component or scalar equations are implicit to each. To deter-
mine explicit directions relative to the missile along which forces and
moments can be conveniently summed, consider a coordinate system whose
origin is at the missile CG and whose axes are directed as given previously
by iH jt, k H" Let aJ be the angular velocity of this coordinate system

relative to inertial coordinates, where

XH 1 yH + YH 1H + COZHkH (3)

in terms of the (H) coordinates.

Utilizing the derivation presented in Appendix A, Equation 1 may be
rewritten as follows:

d' R ddHRdCM m, ( - )_ = m_ _L+ (4)

dt dt \dt dt dt

where all quantities in the right hand side of the equation are understood
to be expressed in (H) coordinates. One may correctly surmise that the
presence of the rnS term relates the motion of the coordinate system (H),
to which forces and moments are referred, to an inertial coordinate system
(1) as required by Newton' s Laws of Motion.

Rather than differentiate Equation 4 directly, it is convenient to let

dH ~1 H'Ii"H I VYHiH VzHkH (5)
dt

so that Equation 4 becomes

dt dt

8



Since V is already expressed in (H) coordinates, (see Equation 5), one

can write

dHV . - .. -VXHiH + VYHJH VZHkH (7)

dt

Combining Equations 3, 5, 6, and 7, and performing the indicated opera-

tions, one then obtains the three component force equations, namely:

FxH = m[VxH + (yVzH -AzHV1)] in the F' direction
XIIH= [11 YHVZ -'ZHVYII H

YFyH = M[ y1 +(W ZHVXH - wxHVzH)] in heIH direction (8)

IFZH = m[ItZH + (&)XHVYH - "aYl -XH)] in the kH direction

One can treat the moment equation (Equation 2) in a similar manner,

obtaining first

IL dJ - dHJ J (9)
dt dt

Denoting (ST) as the total angular velocity of the missile relative to

inertial coordinates, we can write the angular momentum in the following

form:

X(WT)XH iH + Iy(WT)YHJH +_ IY(cT)ZHkH (10)

where lI, ly are the moments of inertia of the missile about the longi-

tudinal and transverse axes, respectively. Note that the assumption of

rotational symmetry (Iz - I y) is implicitly made in Equation 10.

Since J is already expressed in the (H) coordinate system, the time rate

of I can be expressed as follows:'

di

Again, strictly speaking, terms of the following form should be included in the differ-
eit.uion during the burning stages:

i1)'TXT) iY("'T)YH, 1Y(("T)ZH
Howevei, for a fairly stable rocket (no tumbling), Iy( ,f)yll, and ly(o) } ZH c an be

neglected. rhe expression iX() T ) XIlcan be written as follows:

ix(,,- XH] - ik"(,),,,T i + m(0T.X) x (k') 2
dt

where k is the radius of gyration. The latter term can be neglected because usually the

burning fuel has tittle effect on k . In addition, for low-spinning rockets, the former term

also can be neglected. For high-spin rockets, however, nr k (rOaT)XI ! is combined with

other terms which comprise the jet torque which acts to produce high-spin rates. The

reader is referred to Reference zi for further details on thik matter.

9
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Appropriately combining Equations 3, 9, 10, and 11 now results in the
component equations for the moments:

. ... ,Y,,. .LXH = Xlic T)XH + (WyHly((.T)Zn - WzHlv(OT)Ya)

XLy H = Iy(OT)YH + ('ZH 1X(&)T) XH - C*XH1y(6JT)ZH) (12)

LzH = IY(WT)ZH + (IXHtY(wT)YH - CaYHIx(WT)XH)

Equations 8 and 12 comprise the basic six-degree equations of motion.
These equations are of limited use, however, until one knows explicitly
how the (H) coordinate system is moving with respect to inertial or earth-
fixed coordinates. Further, one often has vector quantities expressed in
earth coordinates (such as wind and gravitational attraction) which muse
be properly introduced into the (H) coordinates. Consequently, additio'nal
relationships between the (H) and (E) coordinates must be derived. In
particular, one must know how the (H) coordinate system is oriented rela-
tive to the (E) coordinates, at all times. The orientation of (E) relative to
(I) must also be known. Although other methods exist, as the Introduc-
tion indicates, the use of Euler angles appears to be the most straightfor-
ward for the present study. In this approach, one rotates a coordinate sys-
tem, initially coincident with the (E) system, about selected axes so that
after the rotations are performed this coordinate system will have the same
orientation as the (H) system. One will then have the means for expressing
vectors of one coordinate system in terms of the other.

The reader is reminded that, in performing these rotations, the i. axis
is to be coincident with the missile axis, while -Itt remains parallel to the

horizontal i- E E plane.

To accomplish this end, assume the existence of an arbitrary vector,
extending from the origin of the (E) system, to represent the missile axis.
First rotate the (E) system about the kE axis by an angle 0k so that the
P axis (iE rotated) coincides with the projection of the missile axis on

the iE-'E plane, as shown in Figure I (p 1t).

10



Missile axis

Horizontal plane

iE E

E

Figure I

One may conveniently express this rotation in matrix form, as shown in

Appendix B.

-t cos~ ] i[-sin cos 0 E (13)

-k' 0 0 1 J

Another rotation is yet required about the positive j' axis, (i E rotated) so

tha" ijj (i' rotated) is coincident with the missile axis. Denote the magni-

tude of this rotation by 0, leading to the matrix:

itl cos0 0 -sin 0 it

)H 0 1 0 (14)

k_ t sin 0 0 cos 0

To avoid difficulties later on resulting from ambiguity in the determination

of initial conditions and in other coordinate system transformations, let V
be defined from 00 <_0 < 3600 and -900 <0 <.90 ° , for all time! Obviously

special attention must be given to the equations of motion when 0 passes

through ±nf/2 since sharp discoutinuities in 0 will result. Each rotation

matrix is a linear transformation; hence, one may obtain the (H) coordinates

directly in terms of the (E) coordinates by combining both rotations. This

is equivalent to the following matrix multiplication:

'As an example, Figure 1 would require 0 to take on a negative value.

11



1H cos 09 0 -sin 0 cos~t sinb 0 1E

IJI= 0 1 0 j-sin~ cos~L 01 1 E (15)
-- ] sin 0 0 cos 0_jL 0 0 1

producing

H [cos 0cos1 cos 0sin 0 -sin 0 1E

IH os0E 1  (16)

L j L sin 0cos~ sin 0 sin 0 cos 0j kE

Note from Figure 1 (p 11) that Ih ( rotated) remains in a horizontal
plane, or is perpendicular to kE. This is reaffirmed in Equation 16 where

the component of JH on kE is seen to be zero.

One may obtain the inverse of Equation 16 to obtain (E) in terms of
(H) as follows:

7- Co SO CO SOSO (17)

LE-SO 0 Co k H

For brevity cos A and sin A have been replaced by CA and SA, respec-

tively. It should be noted that Equations 16 and 17 actually represent three

scalar equations. To illustrate this, let us assume the velocity components

of the missile expressed in the (H) system are known and we wish to ex-

press the velocity in the (E) system. We have

V xVXH'H VYHlil ' YZIIN _ VXEi, + VYEiE + VZEkE (18)

First, obtain H in terms of iE, JE' kE, which can be done by using

Equation 16. Thus,

f , + C-OSFj. - sokE
III -S~i. Ct CijE Ok1  (19)

k SOCO + ~1 2

12



It then remains to substitute these equations into Equation 18 and equate
the coefficients of iE, IE, kE to VXE, VYE, VZE, respectively. Performing

these operations will yield:

VXE = VXHCOCO - VYHSO + VZHSOCO

VyE = VXHCOSO + VyHCO + VZHSOSO (20)

VZE = -VXHSO + VZHCO

This is the required transformation.

Although much has been accomplished with Equations 13 through 20, one

must go further to obtain the rates of change of the angles 0 and 0 as the
missile position varies in time.

Let 1 be the angular velocity of (H) relative to (E) where, in (H) coor-

dinates,

OXH'H + O'YHIH + 01ZIH (21)

Appendix B shows (0 can also be written as

=OkE + 0i' (22)

Using the matrices already developed, one proceeds by expressing both

kE and j' of Equation 22 in terms of the (H) coordinates and equating the

resulting coefficients of 1 , ,H' kH to the coefficients of i1 , 'H ka in

Equation 21. This will produce

'XH so

(JYH 
(23)

( 0ZH -- Co

The rates of change of the Euler angles become simply

' XH ._JZH., _ - (24)
o cO

13
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One may note that several angular velocities have been introduced into
the equations of motion, namely, c, (, and ( 'T)- In component form, this

amounts to nine unknowns, a completely overwhelming assignment for the
three moment equations. Fortunately, not all these quantities are inde-
pendent. It can be shown (see Ref 4, for example) that if a coordinate sys-
tem (H) is rotating with angular velocity 6A relative to a coordinate system
(E), and (E) is rotating with angular velocity Q relative to a coordinate
system (I), then the angular velocity of (H) relative to (I), C is simply the
vector sum of the individual angular velocities. Thus,

+ (26)

This can be generalized to more than three coordinate systems. For
example, continuing to use the definitions given in the Table of Symbols,
we are also at liberty to write

(CUT) =  + G + C + (27)

It is now necessary to obtain explicit expressions for Y, (WT), and (cT),
each of which is necessary to the solution of the general equations of
motion.

To obtain components of 9 in the (H) system, one need only convert kE

into the (H) coordinates, since the kE axis was assigned to be coincident

with the spin axis of the earth. Therefore

= QkE = QS~iH +QC~kH (28)

The total angular velocity, (JAT), of the missile is introduced by first

making use of the (M) coordinate system. Since the Tm and i axes are to

remain coincident at all times, the angular velocity (1 of (M) relative to
(H) is simply;

XMM X-"(29)

By the use of Equation 27, the total angular velocity can now be written
in component form as follows:

(("T) XlH 0XIl * XH - QSO

((aT) Y H YH (30)

(UT0)H Z11 QCO

14



One may still sense the existence of too many unknowns, namely, fl, and

the three components of W'. Fortunately Equation 23 gives a relation between

two components of W'. Eliminating produces

OIXH = -(ZH tan 0 (31)

Finally, to obtain explicit expressions for ( as given in the basic mo-

ment equation, Equation 31 is substituted into Equation 30 and the latter

is differentiated with respect to time. This leads to:

T)XH = 6 XH- LZH tan 6-coZ sec200)YH -QCo YH

(T) YH = 'YH (32)

(6 T)ZH = LZH - QSCOYH

This completes the discussion. The equations needed to obtain the

actual trajectory are summarized beginning on page 51. The next section

considers the forces and moments which constitute the "left" side of the

equations of motion (Equations 8 and 12).

Forces and Moments

This section considers the forces and moments acting on the missile.

Excluding guidance, these forces and moments can, be divided into three

categories as follows:

1. Aerodynamic

2. Gravitational

3. Jet

Since the forces and moments are essentially as presented in Reference
1, only a brief account of each will be given here.

Aerodynamic Forces

Three aerodynamic forces are considered. A brief cable giving magni-

tude and direction of each is given on page 16.
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Force Magnitude' Di rection

Axial drag pd2 (V r )'ik DA Along missile axis

Normal force rd N2 Perpendicular to missile axis

-. in plane o a

M~agnus fotce pd'(wT)A tvk'F Perpendicular to plane of yaw2

r( is the magnitude of the missile velocity relative to the air.
2 The yaw plane is the plane that contains both the missile axis and

a resultant velocity vector.

These forces are illustrated in Figure 2.

Velocity of missile
relative to air

kH

Magnus force

Figurt

The axial drag acts along the negative ijji axis, which by definition is
directed from che CIS towards the nose of the missile. Explicitly.

(,Axial drag )\ X11 -It %r) k, )A (

The normal force components act opposite to the directions of (V, )YHl

andi (V ) .Schematically we have

r i10



(V')ZH

r (V2  + (V )
\'(V)YH ZH

(Normal force) Y. 4

Resultant normal force

Figure 3

Knowing the scalar magnitudL of the resultant normal force and using
the geometry of Figure 3, one can deduce the component of this force act-
ing along J H' namely

(Normal force)y,, -: -pd 2(Vr) 2 kN cos a = -pd 2 (V)kN(Vr)Y (34)

/(Vr)' (Vr)YH Z11

Similarly, in the k11 direction

(Normal Force)zi= -pd 2 (Vr) 2 kN (V)ZH (35)
\ + (Vr) 2

Y17 Zl

17



* The Magnus force acts in a direction perpendicular to the plane of

yaw, as indicated in Figure 4. It should be noted that, for reversed spin,
the Magnus force will act in the opposite direction.

QNagnus force)ZH_________

(V (V, (V) 2

Magnus k

force

(Magnus force)y9  Direction of spin

Figure 4

Using the scalar magnitude and the geometry of Figure 4 above, it is

readily ascertained that ir, the JHdirection

T r w~~IV~F(V)ZH (36)(Magnus force)yH - -pd 3(coT)XH(VYkF sinl a _____________

Similarly, in the ki1 direction

(Magntvs force)~ rd( Tr1(~)FV (37)

(\' 4 (V)

A ar cd yn ai c M o ir ai

Procecding in a similar vein as for the aerodynamic forces, the following

table gives the magnitude and dirction of each of the aerodynamic Mo-

.ments considered:



Moment Magnitude Direction

Restoring pd 2 (V r) 2 kN(rC - AN) Perpendicular to the
plane of yaw

Magnus pd' (cTX()k F(rC - AM) In plane of yaw

Yaw damping pd'(V) p~.. k Perpendiazular to
r ) I~wA H+ (w)'z, H missile axis

Roll damping' pd" (Vr )kOP (f~))XH Along missile axis

Roll' pd 3 (V d 2ko, Along missile axis

k OPis used for spin-stabilized missiles, while for fin-stabilized missiles k 4is

to be changed to kA*
2

The roll moment is used o~nly for missiles with canted fins.

In obtaining the components of the above moments, one may use the
relation "distance x force - moment,' ' applied in a manner consistent
with the geometry of the system. When expressed in vector form the restor-

ing moment equation becomes

(Restoring moment) -- (rC - A di H .[(normaj foice)yj 1 "il (normal force)ZHkH 1 (38)

This produces, in component form

(Restoring mom ent)y 11 - (rC - X ) pd'(Vr)'kN(Vr)ZH (39)

)I,+(Vr),H

in the j 1 direction, and

(Restoring moment) Zj k. ANPdV'NVYll (40)

in the k,, direction. Note that both magnitude and direction are consistent

with the above table.

Doing likewise for the Magnus moment prcduces along the ill axis

(Magnus moment).,, -{rC - kM)pd(()T) X FVr k.4 Vr )y t (41)
INV(V )V

r yll r Z1

19



while along the kH axis

(Magnus moment) ZH -rC - AM)pd3 (wT)xH(V)kF(V zH (42)

The yaw damping moment acts to diminish the yaw of the missile;

hence, this moment acts opposite to the lateral angular velocity of the
missile. The components of this moment are readily ascertained to be

(Yaw damping)y H - -pd'(V) :OT)YH + (WT)ZH kH cos By (43)

(Yaw damping) ZH = -pd 4 (VX) %V(coT)YH + (OT)'H kH sin 3y (44)

where 8¥ is shown in Figure 5 below.

TH

Resultant lateral

Yaw (WT)ZH 
angular velocity

damping 6 y ""T)YH + (WT)'Z

moment ( Y H

Figure 5

Writing cos By in terms of (oTyl! and (w ,)ZH

Cos By ("IT)Y II (5

,(,T yit I  ((,JT)ZI(

and substituting into Equation 43 leads to the component alone I,!

(Yaw damping)y,, -pd*(Vr) ((WT)yIIkII (46)

similarly, for the component along VII

(Yaw damping)Z! -pd4 (V) ( .)k11ll (47)

20



The roll damping moment acts to reduce the spin; hence, it is introduced

into the equations of motion with a minus sign prefixed.

The direction of the roll moment depends upon the orientation of the

canted fins. If the cant produces positive spin (i.e., a clockwise rotation

of the missile looking from the rear of the rocket), then this term is intro-

duced with a plus sign. Like the roll damping moment, the direction is

along the longitudinal axis of the missile.

It should be noted that, since none of the aerodynamic coefficients

(kDA , kN, kF, etc.) are assumed to be linear in nature, they are not to be

tak,.n as slopes to be multiplied by angle of attack. Rather, these coeffi-

cients are point values obtained directly from experiment as functions

both of Mach number and angle of attack.

Table 1 (p 22) summarizes in component form the aerodynamic forces

and moments considered thus far.

Gravitational Force

In evaluating this force, distinction must be made between spherical

and flat earth cases. In the latter case, the gravitational force acts in a

constant direction (independent of the missile position) while in the for-

mer case, the gravitational attraction is directed towards the earth' s cen-

ter from the missile CG. In both cases, specific expressions can be de-

rived; the simpler case will be treated first.

Flat Earth Case

In the absence of the earth's rotation,' both theT and T-: axes are

taken as extending in positive vertical direction. The origins of the (I)

and the (E) coordinate systems are both located on the surface of the

"flat'' earth. Hence, mgy (y being a unit vector representing the direction

of the gravitational force acting on the missile) becomes:

mgy -mgk I -mgk (48)

One should have little desire to reline the model to include the earth' s rotation and

yet allow the assumption of a plane to represent the earth' s geor'etry.
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Replacing kE by its representation in (H) coordinates, similar to Equa-

tion 28, one obtains

mgy - m"Soi - mgCtk" (49)

in a form suitable for substitution into the general equations of motion.

Spherical Earth Case

For this case, the direction of the gravitational force depends upon the

missile position. In particular, let the current missile position be repre-

sented by a vector R, where

R RXEi E + RzEjE R ZEkE (50)

as shown 'n Figure 6.

mgy

"Qr
Rz R

Center i E RYE
of earth m -

Figure 6

Dividing R by its magnitude produces the unit vector

R - RXEiF RYEJE RzEkE (51)
,R2 E R y' R Z

Al \XE YE !ZF *RE

Clearly,

mgy -mgR (52)
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Combining Equations 51 and 52 and obtaining iE, IE' kE in terms of the

(H) coordinates, there results:

(Gravity force)XH = -mg [R xECOCOb + RyECOSOb - RzES0]
V/R 2  + R' + RE

XE YE ZE

(Gravity force) YH -g [-RXESV + RYEC0b] (53)

VR2 + R2  +R 2

XE YE ZE

(Gravity force)zH = -mg [ R XESOCVJ + RyESOSOb + R ZECo]
/R2E + R' + R 2

XE YE ZE

One should note that the gravitational acceleration, g, is a function of alti-
tude. In both cases, one may write

g -g 0  (54)
1[h

where

go - acceleration of gravity at sea level,

Rearth = radius of the earth,

current altitude of missile

h = (R ZE for the flat earth case)

{ R 2E + R'E + R'E for the spherical earth case.

Since the gravitational force acts at the CG of the missile, there are no
moments associated with this force. Table 2 (p 25) summarizes the results

of this derivation in component form.

Jot Forces

A single jet force is considered, the thrust, which imparts l'orward motion

to the missile. Ideally, this force should act along the missile' s longitudi-
nal axis; however, due to imperfections in the rocke. design, the actual
nature of propellants and other factors, there may be a component of thrust

perpendicular to the longitudinal axis. Since the thrust vector is defined at

a given time relative to the missile body, the thrust components will first
be ..cified in the (M) coordinate system (i.e., the coordinate system that

is rigidly attached to the missile).
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Using the symbols presented in Figure 7, one can easily ascertain these
components to be as in Equation 55.

Point of' kM

Figure 7

(Thrust)XM = TXM -T COs S

(Thrust)yM =TyM -. T sin ST cos 6A(55)

(Tbrust)ZM TZM i sin SA

It is necessary, of course, to determine the components of thrust in the
(H) coordinate system along whose axes the forces are summed.

Figure 8 shows a typical relationship between the (H) and (Mf) co-
ordinates.

- kH
#A Laeval thrust component

Figure 8
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Here S is defined as the angle between the -M and i H axes. It is readily

seen that

I] 1 0 0 1H

IM 0 Co s S sin S l H (56)

k 0 -sill S Cos S kH

and, from Equation 56,

iM = cosSJH +sin SkH  (57)

kM= -sin SjH +cosSkH

Combining Equations 55 and 57 produces the required result:

TXH -- Tcos8 T

Tyt- T sin 8T Cos (SA + S) (58)

TZH Tsin 8 Tsin(SA + S)

Jet Moments

Two jet moments exist. One unintentionally arises from the fact that the

line of thrust may not pass through the centroid of the missile. The other

is an intentional jet torque which causes the rocket to spin about its axis

of revolution. To be explicit about the former, one may define a vectorl

from the CG of the rocket to the point of application of the thrust at the

nozzle exit. As before, this vector is defined in the missile coordinate sys-

tem, i.e.,

r" IxMiM I ry jM  I rZMkM

The corresponding jet moment is now given by

(Thrust *moment) - r " (nthrst)
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which in component form becomes:

(Thrust moment)XM ryMTZM - rZMTyM

(Thrust moment) YM rZMTXM - rXMTZM (59)

(Thrust moment) ZM rXMTyM - ryMTXM

Converting these components into the (H) coordinates and substituting
Equation 55 finally produces

(Thrust moment)XH -_ T sin TlryM sin 8A - rZM Cos SA ]

(Thrust moment)yII T [rZM Cos T-rXM sin bT sin SA cos S
- T [r XM sin 6T Cos SA - ryM cos Y sin S (60)

(Thrust moment)zIf T [rZM cos 5T - rXM sin ST sin SA] sin S

T IrXM sin T COS SA - ryM cos 5T] cOs S

The final moment, the jet torque, will be assumed proportional to the

thrust. If this moment produces positive spin, this term is to be intro-

duced into the equations of motion with a plus sign prefixed. Mathemati-

cally,

(Jet torque) k T i11  (61)

This concludes the discussion of forces and moments.

One might note that V1 , the velocity of the missile relative to the air,

has not been defined in the presence of winds. In the next section of this

report explicit expressions will be derived for this vector in the (H) coor-

dinate system.

Introduction of Winds

This section derives expressions that can be used to introduce wind

into the equations of motion and thus determine (V, . For the spherical

earth case, it wili be assumed that wind data exists at preselected points

on the earth' s surface. For a flat earth, it is assumed that wind is pre-

sented as a function of range and altitude.

In both cases, if one knows the velocity of the missile (V,) and the

and the air velocity (VA), each relative to the earth's surface, then the
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velocity of the missile relative to the air (Vi) is given by

(\) VM,'A) VNI - VA (62)

For the flat non-rotating earth, wind is likely to be given relative to the ground;

therefure, use of the (E) coordinate system is appropriate and Equation 62 may

be written as

(Vr) (Vx E - (VW)x .)ij. (VYE -(VW)yE) 1. + (Vi. -(V ,)zE)k E  (63)

where (Vw) is the actual wind vector.

It is an easy matter to convert Equation 63 into the (i) coordinates.

Doing so produces

0r) X1 lVx - (Vw)x..ICO + IVY: - (VW)YE:OSO - IS - VE - (VW)E,)l.:SO

(v ) I'l -4Vx E - (V'OxE SO vYE -- (VW) Y F11:6 (6.-4)

(Vr)Z i . IVXE -(Vw)xEIS1C0 + IVyi.: -(Vw)yI]SOS0 + [VzE - (VW)ZEIC

Of course, (VIO)xl-:, (V,')yE, and (VA)z-. can be given as functions of

range.

The spherical earth case is a bit more compLicated because of the

geometry. Also, one must ac,.ount for the motion of the air induced by the

earth' s rotation in addition to wind (i.e., disturbance of the air within

this rotating air mass).

Recalling that Equation 5

\1 X • \ Y11I11 , VZII it

dt

is the velocity of the missile relative to inertial coordinates (by delinition

of c), one must also express the motion of the air induced by the earth' s

rotation relative to inertial coordinates. By so doing one can obtain the

. . ; ,. o f . t ... I L ,, T h , w ill h ,- rh ,.

equivalent of Equation 6? referred to inertial coordinates.

The air mass rotates as a whole with the earth; this is -ihown physically

by noticing that the rotation of the air mass is not apparent te one on the

earth' s surface. The ve'ocity of this rotating air mass at the current mis-
sile position (specified by the vector R) is simply

Rot. air ma .,,0
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The velocity of the missile relative to the rotating air mass therefore

, Ibecomes

VM/Rot. air mass V - (d x A) (66)

One must now account for the wind itself. For the spherical earth case,

win'ds may be conveniently introduced into the equations of motion by use

of the azimuthal coordinate system (W). This coordinate system is de-

scribed on page 6 and is illustrated in Figure 9 (p30), where the origin of (W)
has been translated to the earth' s surface at 0' for visuai purposes. The

wind can be considered to be a function of the height h, of the missile CG
above the earth's surface, (see Figure 9). One method of designating the

wind in the (W) coordinates is to specify wind magnitude and wind direction

measured from North at given altitudes. It will be assumed in this report that

the wind vector, 'W(h), has no vertical component. Thus at a given altitude
Vw(d) should be expressible only in the jw-kw plane, as presented in

Equation 67, using the geometry of Figure 9.

North Current missile

CG position

Typical wind
W ~vector Z _.

~RzE

iu 9

Fi1gure 9



(Vw) Vw(h)i sin k iw + IVw(i)I cos b kw (Vw)ywlw + (Vw)zwkw (67)

The presence of emphasizes the dependence of wind on altitude. The

point 0' on the earth's surface is defined by a and y where

a - tan-I CRyERx

(68)

-: tan' f R E

V XE Y

where if

RYE>0 0 <a<90

RXE *0
RyE < 0 2700 " a< 36 0 0

RYE " 0 900 <a < 180"

RXE- 0
RYE' 0 180" < a< 270 '>

and

-90. y ,90'

It remains to obtain the wind components ia the (H) coordinate system

and add the results to Equation 66. This is done by first obtaining j)

and kEl in terms cf (E) and then (b, the now overworked Equation 17)

obtaining (E) in terms of (11).

Rotaing first about kJ: through the angle a and then rotating about j'
through the angle (-i ((3 -y in Fig 9), one can see that the resultant co-

ordinatc system will be c,'incident with (W).

Performing the indicated operations results in

i w  C l-i .C -4,; E' i

-- , Ca 0 E (69)

I ~ (69



Combining Equation 69 with Equation 17 completes the transformation.

Thus,

iw CfoCa Cf3Sa -sI Cco -so SOCO 'H

W -Sa Ca 0 COso co Soso ) i

1kw] SCa S(Sa CO -so 0 ce k H

leading to

w 2K1 22 2 (70)

where

All CfCaCOC + CoSaCOSO + St3so

A12  -C3CaSO + CfSaCO

A, Cf3CaSOCO +- Cf3SaSOSO - SfOCO

A23 - -SaCOCO f CaCOSO/

A2 2  SaSo 4 CaCO

A2 3  -(:. )C' - (aSos6Z,

Al, Si~aocOCO s- SSaCOSO - Cf3S9

A 2  -Sicaso S SCCO

A3, SliCaSOCO , SBSaSOS + C13c)

Clearing up the remaining threads, we have

(V&)Y ' (\ 1 )Zi ' (Vi, , (V .)YJj! , (VV,)ziik 1  (71)

where the usual algebraic manipulation results in the necessary equation

(\?'A. ) ( 2  (V ) Al (72)

(V) (%)11 A'(V )z A
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Finally, the sought afer vector is

,V - (9 , ) i( ) (73)

Note again that Vv1 prescribes the wind velocity relative to the rotating

air mass. Thus, for a missile moving on or above the surface of the earth

with a velocity of d , A (stationary orbit or fixed surface point), in the ab-

sence of winds would cause the relative velocity, Vr to be zero. Writing

Equation 73 in component form yields

(VdxH VXi - CO RYt H - (VU,)X 1

(VdrYi) 'iYi QCORxi + Q SORZH - (VW)yt! (74)

(Vr ) Z11 V ZH QSORyH-(Vw)zl

where, of course, the magnitude of (N') is

V, - \I(V (V)2  . (V )z
r XH r YH r ZII

This completes the analysis of winds.

Initiol Conditions

Initial conditions for the spherical earth case will be derived first.

Initial conditions for the flat earth are immediately obtainable upon spe-

cializing certain of the parameters.

In order to start the trajectory, a complete set of initial conditions must

bc providvd. These are tabulated below for convenience.

R. V~l 0 (0) 11X i

R Z . VZ1I G)ZIj

Those conditions that depend upon a coordinate system for representa-

tion can be given in terms of other coordinate systems, if desired, as long

as known transformation equations exist between such coordinate systems.

Of the conditions stated above, the missilt orientation expressed in

terms of j() and (o) is not usually known, per se. But the following

measurable quantities are (or at le- -t hould be) known:



" Longitude of the launch point A0

Latitude of the launch point B0

Azimuthal heading of the missile G' (This will be defined more explicitly

jater in this report.)

Angle of declination of the missile

from the local vertical Ho

It is possible, as will be shown, to express 0,(0) and 0(0) as a function

of the variables A', B, G, and H0 . To do this, one rotates a coordinate

system initially (t - 0) coincident with (E) through the above measured

angles. Upon completion of the rotations, the resultant coordinate system

is identical in orientation with the (H) coordinate system at launch. The
(H; system is also defined by simply specifying 0,(0) and 0(0). Each of

the resultant rotations can be expressed in matrix form, one matrix contain-

ing the four known variables and the other matrix containing the two un-

known variables. One is then at liberty to equate corresponding terms of

the two matrices, since each actually represents the same coordinate sys-

tem. A particular notational schem- is used to distinguish the several

rotations performed. Attached to each unit vector is a series of primes, the

number of which denotes the number of rotations already performed.

The purpose of the first two rtations is to locate the i axis so that,

when extended, it passes through the CG of the missile at time t = 0.

This is done by first rotatirg about k through the angle A0 so that the

' axis lies on the sarae !oagitud as the missile CG and, secondly, by

rotating about 7 through the angle B", the latitude of the missile position.

These rotations are u.ed in the same order to obtain the position of the

azimuthal coorJinres; hence, one may use Equation 68 with az and 8

replaced by A and B, respectively. Thus

i" I CACB SACB -SB iE

-SA CA 0 IF (75)

-ko' CASHB A1 C .

The purpo-e of the next two rotations is to orient the iP axis so that it
becomes coincident with the missile axis.

In particular, the third rotation is about it through the angle G", so

that after this rotation is performed -k' coincides with the projection of
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the missile axis on the j"' - k' plane. In matrix form, we have

"'] 0 CG SG (6

--T_/ 0 -SG CG- -k7'

The fourth rotation is about j'" through the angle 11' so that i' ' is

finally coincident with the missile axis. Upon examiring the geometry of

these rotations, 11' is seen to be the angle of declination the missile makes

with the local vertical i"

Mathematically,

CH 0 -H il

K ,-- , j I 1 (77)

Combining all rotations performed results in

i" bit b , b , i E

b1 b,,, E (78)

Lk -, J L bit b32 bitc

whe re

bit CHCBCA - SHSGSA - SHCGSBCA

bit CiICBSA i .HSGCA - SHCGSBSA

bit -CIlSB - SH(CI(;B

bl -CGSA S;SBCA

b2 CCA SGSBSA

bl SGCB

bt SI(*B( A (INIS A • ( ( I S( -A

b,. SI( WISA ( I AI(.( . , (I11( SIS SA

bil -S Sl I ( 1 l( i

Although one may fel that it sufficient numbcr of rotations have already
been perforned to obtain i . -. coincident with the missile axis, there is
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yet no assurance that j'" will lie in a horizontal plane, as required. This
•I situation is remedied by performing a fifth rotation about i through an

angle L such that the resultant position of j". lies in the horizontal
plane. In matrix form

0 CL SL J''(79)

[kH j 0 -SL CL -J kl'°

The magnitude of L is as yet unknown. Substituting Equation 78 into

Equation 79 produces the matrix

SiH  bll b 2 b3 tE

fH b2,CL i b31SL b2 2CL 4 b,2 SL b2 3CL 4 b 3,SL E (80)

[H-b2 ISL +b,,CL -b, ,SL +- b, CL -b2,SL + ',C El

which enables one to convert from (H) to(E) coordinates. Equation 16

il C co st, -so ] 'El
7"--

)u -so c V) 0 JE (16)

L kl' S, C SOSo CO] kjE  (

also relates the (!1) and (E) coordinates. Since these sets of equations

are equivalent at the -tart of the trajectory, one simply compares corres-

ponding terms, from which one obtains L as well as V(0) and t)(0).

In particular,

Sin O(0 -bl (81)

ien 0 (0) b,

(os 0(0)
(82)

0o (0) be,
CO S 0(0)

10



and by using

b23 cosL + b, sin L'0
(83)

b2 2 cos L 4 b3 2 sin L =C

one obtains for L

Cos L -b 33 CO
b2 3 b 2 - b3 , b2 2

(84)
Sin L- b2 l CO

b2 2 b3 2 - b3 3 b22

Although L need not be explicitly used in determining 0b(0), 0(0), L com-
pletely describes the missile orientation at launch.

Since 0 was restricted between t 90', the quadrants of each angle are
uniquely determined in the preceding equations.

The initial linear and angular velocities may be given in terms of either
the (E) or the (H) coordinates, although Z is usually most easily expressed
in the (H) coordinaee system. Perhaps it would be best at this point to
illustrate the theory by a brief example.

Let us suppose that it is desired to launch a rocket as pictured in Fig-
ure 10 (p 38). We make the following assignments:

A = 300 (Longitude)

B = -40' (Latitude. Note the negative rotation aboutj' for the Northern Hemi-
sphere; hence, the minus sign).

G = 10" (1900 - 1800 so that the negative- k axis will coincide with the
line 0' P).

H - 350 (Angle of declination from the local vertical).

;b(O) and 0(0) can then be determined by use of the equations up to and
including 84.

Let us now introduce a 50 yaw angle in a plane containing the local
vertical, measured towards the north, as pictured in Figure 11 (p 39). From
the geometry of Figure 11 (b), one can obtain the components of the mis-
sile velocity in the (E) system and use the transformation Equation 17 to
obtain Vx>1, V ,1 and VZ1. 0 is simply the spin of the missile as
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Diagram Illustrating Initeal Conditions (I)

North
Local vertical (iv

Tangent plane at 0',

point of missile laounch

Equatorial plane

0' longitude

Figure 10



Diagram Illustrating Initial Conditions (11)

North

Local vertical

% Initial velocity vector

MissilI* axis

kE Local vertical

Velocity vector
Missile axis

'E (a)

Figure Ii



observed in the (H) coordinate system. L)YH and ZH are the lateral

angular velocities of the missile as observed from the surface of the earth.
Sketching the rotat:ons in sequence before numerical values are assigned
to these quantities can be helpful.

We will now specialize the results so that they are appropriate to the

flat earth case. As has been mentioned previously, the vertical is to be
the kE axis, while the i. axis will be taken as downrange. One conveni-
ent way of ascertaining initial conditions is to first obtain the i" axis
coincident with the kE axis; then, with G' and H' known, compute 0'(0)
and 0(0). Referring to Figure 10 (p 38), we replace the 300 with 0' an'd

the -40' with -90" (or "70'). The i" axis thus achieves its first desired

orientation. Mathiematically,

A --0

B 2700

Our matrix Equation 78 for arbitrary angles G and H now becomes

P111 S H C G SHSG CH E

LCHC i~iG SH(85)
L~~"-CHCG -c H ksE

When the appropriate quantities are substituted ir:i,. Equation 83, L be-
comes zero. Using these results to obtain 0(0) and 0(0) for the flat earth

case gives t- following:

(0) G

"(0) 1 - 90 (86)

L 0 '

foe

A 0

B 270'

The other quantities VX I . . . . . "Z are, as before, treated a,,atogously,

although R x! r R , -, and R / -: may (if appropriate) br assigned values of

;cro.
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This concludes the section on initial conditions. More information will

be provided on -'is subject when the alternate set of equations, as derived

in the next secon, is used.

Singularity Conditions ana an Alternate Set of Equations

This section presents an alternate set of equations to be used when

singularity conditions are approached and, equally important, the means to

convert to this set during flight simulation.

As indicated under the General Equations of Mocorn,speciai arention must

be given to the equations of motion when 0 approaches + 17/2 . As had been antic-

ipated, the term ,, 1 tan 1) in the equations of motion approaches infinity as 0ap-

proaches 90'. Furthermore, 0 becomes indeterminat.' when this singular coni.

tion is reached. Unfortunately, ) 90 occurs whenever the missile axis be-

comes vertical, the occurrence of which canno, be ignored. To avoid thiscondi-

tion, the (H) coordinate system will be replaced by a tew fixed-plane sys-

tem labelled the (V) coordinates. As outlined in the beginning of the pro-

cedure, 1v is constiained to lie perpendicular to the iE axis (i.e., to lie in

a -pecified fixed -ertical plane) while iv is to be coincident with the mis-

sile axis. This change necessitates redefining the Euler angles, and deriv-

ing equations oi transformation between the two coordinate systems.

To satisty the condit-ions imposed upon the (V) coordinate system, the

rotations indicated below are made.

1. A rotation about I F of mzgnitutc qi.

2 A rotation about j' of magnitude R, so thar i" iv becomes the

missile axis.

To avoid ambiguity, the following angle restrictions were observed:

0 -_4 W)O6

0 --(0 180

In matrix formn ,S0-S 0 0

I4 0 1 0 0 ( M S 1 (87)

c . s



After multiplying, we have

iv CO sOST -s(.cq' 1E~
-] 0 CT STIE (88)

-cTs,, cIc ,

Note that, as required, Iv has no component along L'.

Rather than introduce new notation, a prime over a given "omega" will
denote that the particular angular velocity that was previously referred to
in (H) coordinates will now refer to the (V) coordinates.

Continuing in a manner analogous to the horizontal coordinate system,
we can write

1 E +eJ -=[COi v +SO kV]+aj (89)

or in component form

o' = Ce

O'V = 6 (90)

, =zv *so

and for later purposes

W ZV (91)V tan

Note that, when 0 = 00, a singular condition is again present; however,
investigating the geometry of the rotations for T and G will show that this

occurs when the missile axis is horizontal rather than vertical, a situation

for which the previous set of equations is applicable.

The angular velocity of the earth in the new coordinates becomes

O=C = [-QSOC'P=v + Qs' + QCGC' (92)
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Letting Q' be the angular velocity of the (M) coordinates relative to

(V) coordinates, we can write

+ + + (93)

or, in component form (after using Equations 91 and 92),

(0

rzv -XS CeT)YXV -V fl tan e Q,;

(W oY -'j + Q/SY (94)
(T)YV YV

(WT)Zv- (0zv + QC8Cl

Differentiating Equation 94 yields

ZV a + ZV - [CoC'' -SoS'lI
XV sin 2

6 t an 0

= V + Q C Pl (95)

", ", - Q [Soc'IP6 + coskp']

One may note that Equations 8 and 12, the basic component equations

of motion (as well as most forces and moments), were derived without

first specifying the orientation of the (H) coordinate system; hence, they

are equally valid in the (V) coordinates. Therefore, using the "omegas"

and the "omega-dots" derived above, along with the new transformation

equations, produces an alternate set of equations valid for vertical orien-

tations of the missile.

Since both sets of equaions have their own singularity conditions, it

it necessary not only to have both sets of equations available but it

should also be possible to convert from one system to the other as the

need arises. It is the purpose of the next few equations to establish this

conversion.

By definition the i axes of the (H) and (V) coordinates are coincident;

hence, if an additional rotation is made about the iv axis so th- Kv
rotated lies in a horizontal plane (as determined by i.. and JE ) ' then the

(V) coordinate system wiil become coincident with the (H) coordinates.
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Let us denote this additional rotation by (D, whose magnitude is yet un-
4 known. In matrix form

CO siv (96)

kH ] 0 -SD C V

Combining the inverses of Equations 88 and 96 eventually produces

SOSI C'C( - COS'So -CPS( - COSCO j (97)

k I -SOCV StCY( + COCVS( -SSO + COCCOl' c kH

Comparing this with Equation 17 yields explicit expressions for ob-
taining T, 6, and F in terms of 0 and 0, as follows:

Cos 0 cosOcos'k (99a)

Sin Ti cos Osin '; cos i . sin 0 (98b)
sin E sin 0

and

Sin ( -sin ; cos $. sin 0 cosV' (98c)
sin 0 sin 0

Again no ambiguity results from the restrictions made earlier on 6 (i.e.,
the quadrants of 6, T, and 4P are uniquely determined).

Knowing TI, 6, and 0 and, of course, 0, 0, i, and 0), we are now in a

position to determine the angular rates of change, ' and 6.

This is accomplished by differentiating Equations 92a and 98b, producing

0. socob9 CO0S6J (99)
so

and

S0--sos jh + coc 1 I - :osocao& (100)

CT sin'0



if P happens to be either 900 or 2700, one can differentiate the second
equation (98b), obtaining instead of Equation 100

- -sc06 + sOcoo (101)

ST sin'a

to eliminate the singularity.

Once these derivatives are known it follows, from Equation 90, that
60' =qsin

(102)

YV

To obtain Qkv, one need only equate the two expressions for (&TX,

obtaining

lkV + V - SC- =XH - (jZH tanO- 9 SO (103)
tan e

or, since SOCY = SO,

(0(p, ZV
XV = XH-()ZHtanO -  z (104)tan 0

To complete the transformation, Equation 96 again comes into use. We
have for the invariant vectors (force, moment, and velocity)

FXv = FXH LXV = LXH

FYV = FyHC Z-FzHSO Lyv = LyHC Z-LzHSo

F'V = FyH SD + FZH C'0 L'V = LySD + L ZHC'

(105)

v' v C¢-v SXV XH

VV. - P c- V S(D
YV YH ZH

V' =V SO 4 V C4'
ZV YH Zlt
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Other equations required for using the fixed vertical plane are

VXE V C'+ V S8

(Gravity force)x V = mg SOC'I (flat earth)

(106)

(Gravity force)XV = _ g [R XE CO + RYESS - RZE SOC]

v' R' R-XE YE ZE (Spherical earth)

with similar expressions (tabulated in the Summary of Equations, page 51)

for the j and k directions.

Concerning winds, we use the two matrices shown below

i c o Cca C/3Sa -Sf1 Ce 0 so i V

- Ca 0 SeJSi CI -COS'l I V (107)

SJCa SJSa C/3 -SOc C STI' ceckJ

which produces, in a manner analogous to a previous result,

(v,)x-v -(Vw)ywA^,, + (VW)zwA3,

where now

A-- -SaCO CaSOST

(108)
A,', S3CaCcOt sMssE - C13Sec

This result and the other two components are tabulated in the Summary of
Equations (p 51). Needless to say, (V) is determined from Equation 72

written in terms of the (V) coordinates. Wind for the flat earth case is

analogous to that of the (if) coordinates. The resulting equations are also

tabulated in the Summary of Equations section.

Before leaving this section, three derivations are yet required. These

involve expressing the thrust and thrust moments, specifying new initial

conditions in the (V) coordinates, and converting irom (V) back to (11).
We begin with the thrust equations.

Since D is defined as the angle between the j vand axis, Figure 8

(p 26) may be modified as follows:
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H V Lateral thrust
component

S

4)H so

Figure 12

from which it is clear that the thrust components expressed in the new co-
ordinates are given by Equation 58 with S replaced by S,. Thus,

TYv = T sin 8Tcos (8A+ S') (109)

TzV = T sin 8 T sin (8 A+ S')

At changeover (i.e., when converting from (H) to (V) coordinates), angle
S' is defined by

S' =0 +S (110)

after which the following is used

S' = f ' Ddt S 'J
t changeover It changeover

Use of these equations implies that there is no reorientation of the (M)
coordinates; hence, all quantities previously referred to these coordinates
(such as SA, ST rXM, ryM, rZM) remain constant when changing from (H)

to (V) coordinates.

One similarly replaces S by S' in Equation 62 to obtain the thrust mo-
ments in the (V) coordinates.

This completes the transformation equations pertinent to the thrust terms.
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Initial conditions must be provided in the (V) coordinates, because of

the possibility of "vertical latnch." Actually, much that has already been
derived in the section on initial conditions can be used here. The only
real change is that angle L has to be redefined relative to the (V) coordi-

nates. Angles A, B, G, and H are defined as before. Let L' denote this

new angle. It is determined by noting that Jv is to have no component

along iE , in place of kp. This is effected by equating Equation 80 (with

H's replaced by V's) with Equation 88 (instead of with Equation 16 as
was done before). Mathematically, we have

Cos (O) - bl

ST b12 C b.__ (112)

We have for L'

CLI - b3t C

b.,I b3 2 - b31 b2 2
(113)

SL' b,, CY
b2 1b 32 - b31 b2 2

where b10 .... b,3 are defined as before.

For the flat earth case, again setting A 7 00, B 270', we have

Cos 0(0) SHCG

(os '4(O) H_ (114)
so-

Sin l1(o) SG
SO

Finally, it is necessary to determine expressions fo r converting from
(V) to (H) coordinates. To obtain th.'se expressions, one can proceed in a

mainner simi!ar to previous derivations.

An angle '' is defined such that when a rotation of this magnitude is

performed about i, the * axis will ther lie in the horizontal plane (i.e.,
parallel to the equatorial plane). This rotation expressed in matrix fcrm
will yield Equation 96, with 0 replaced by '.
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Postmultiplying the illverse ot lquation 88 by the inverse of Equa-
tion 96 produces

1i1.1 (A(-) SeS(I' , (-)C ;F 1i
SE S()s' C - CS')SlS()' -cTliSsF' - C(1)S'C4" ill (115)

k E -S IC V s VC -F' c c c ' s ,' -S s' S T + COC O'[- ki1

Comparing Equation 115 with Equation 17 below

i E (;¢IC -so SOcO5 i

i]E COSO CO SOso i (17)

-So CO k

results in the following transformations:

SO - s(kA'

c¢, -ce- ¢ sesi
co s) o
CO CO

(116)

,;D SO C's,

No ambiguity results, since -_ u

To obtain the angular velocitivs, one differentiates Equation 116,
obtaining

-- -)s__ (117)

colost S-)cow
ci (:0l ()s'V(;i s(-)C.'iJl s( l ,

CCO S'# (18

If 'j, is 90" or 270, one can use

(119)S4,'' cos' 1)

Equation 104 completes the transformation of the angular velocities.
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Solving for QXHleads to

QXH QXV + &LZH can0 V (120)
tane

where both oy, and (wZl! are defined by Equation 23.

When Equation 96 is used, the forces, moments, and velocities can be ex-
pressed in (Hl) coordinates, given their representations in (V) coordinares.

These auxiliary equations are tabulated in the following section of this

report.

This, therefore, completes the transformation from the (V) to the (H)
system. A complete tabulation is presented in the following section.

Summary of Equations

The equations of motion as derived in the preceding five sections are
summarized below. In the writing of the equations, the primes have been

dropped when working in the (V) system. No ambiguity should result.
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RESULTS AND DISCUSSION

The final equations resulting from the derivation are tabulated in the
preceding section. There are, however, many aspects of the equations that
have not been discussed. It is the purpose of this section to consider
briefly some of these aspects and limitations and to mention what is in-

volved in incorporating certain refinements in the equations as presently
derived.

One might begin by noting that a typical rocket trajectory consists of
several flight phases. Explicitly, these phases, typical for a two-stage
rocket, may be tabulated as follows:

1. Acceleration of booster and main stage

2. Coasting of booster and main stage

3. Separation of booster and main stage

4. Coasting of main stage

5. Acceleration of main stag.

6. Free flight of main stage.

These phases are in direct correspondence with those used in the six-
degree-of-freedom digital computer trajectory program at Picatinny Arsenal.
The user is thus able to run any or all of these phases. Phase 3 is effected
by imparting a shorr thrus: tu the main stage, simulating the actual booster
separation.

Since the aerodynamic oe ffcients, ccnte,s of gravity, pressure, etc. are
not necessarily identical for all phases, several sets of such data are
often required to simulate a complete trajectory. The equations in the pre-
ceding section of thi, report r.e used tor ail phases.

To numerically solve the differential equations of motion, a modification
of the third order Runge-Kutta technique is used (Runge-Kut" i-Gill). This
numerical scheme appears to be adequate for both low, and high-spin pro-
jectiles, although inclusion of thrust malalignments remains to bt. investi-
gated. As is indicated in the Introduction, however, i: appeared that tl s
numerical scheme was not satisfactory when high angular ,ates *; change
were implicit in the equations themselves. This condition pertains to high-
spin projectiles for which the fixed-plane coordinate system is rigidly
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attached to the missile (as was originally done). This is an advantage of
the present coordinate system.

Other aspects of these equations, such as the use of thrust modification
factors, the atmospheric model (ARDC Atmosphere of 1959), etc., will be
discussed in a forthcoming report.

Some of the refinements of the equations are discussed below.

1. Introduction of an ellipsoidal earth model. This modification has
far-reaching effects on the equations. For example, the direction and mag-
nitude of the gravitational attraction (consistent with the earth model)
would vary with missile position. Additional coordinates would have to be
specified on the surface of the ellipsoid to properly introduce wind data.
In addition, an iterative scheme is necessary to compute the altitude of the
missile if it is naturally defined as the shortest distance from the missile
CG to the earth model. Initial conditions would also be modified accordingly.

For increased ranges and accuracy requirements of trajectory simulation,
the ellipsoidal earth refinement may well become necessary.

2. Treatment of asymmetrical missiles. Asymmetrical missiles can
arise from two sources. The more severe situation is present if the ex-
ternal missile configuration does not possess rotational symmetry. For
this case, the transverse moments of inertia could vary about the fixed-
plane coordinates as the missile rotates. Also, specific data relating the
resultant point of application of the acrodynamic forces would have to be
provided for accurate results. A second asymmetrical condition can occur
for externally symmetrical missiles when the missile CG is offset by a
prescribed amount from the longitudinal axis of the missile. This obviously
modifies the lever arms in the moment equations and may also introduce
time-dependent moments and products of inertia.

3. Other refinements could include guidance and launcher effects, both
of which can play prominent roles in trajectory analysis.

In addition to the limitations listed earlier, two assumptions were im-
plicit in the derivation. The first is that the motion of the eaith about the
sun was neglected; for most sub-orbital trajectories this phenomenon can

be ignored. The second assumption is that the rate of change of inertias

was neglected (i.e., i terms during the thrusting periods). For missiles
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possessing excessively high burning rates with large angular velocity corn-

t !ponents, the magnitude of these terms should be investigated.

A final word about the equations is that there is no estimate of the dis-
persion of the missile. This requires the computation of several trajectories,
each for a slightly different initial condition, with appropriate statistical

combinations of the various ranges and deflections from a fixed standard.
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APPENDIX A

Rotating coordinate systems

It is the purpose of this Appendix to express the rate of change of a
vector relative to fixed coordinates, in terms of rotating coordinates. Briefly,
this analysis answers the following question: "Given a particle whose
motion is known, how would the particle's motion appear to someone
situated on a coordinate system that is itself in rotation?"

Obviously, one must know the motion of the rotating coordinates relative
to the fixed coordinates. To be explicit, let (I) denote fixed coordinates
and (H) a rotating coordinate system, whose origins are both coincident.
Further, let C) be the angular velocity of (H) relative to (I). This motion
might be as depicted in Figure A-i, where the three dotted discs represent
the paths of each axis of the (H) system for the given constant W.

I.I-

Fig A-I
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Let R bean arbitrary vector. Clearly, R has a representation in the (H)

system as follows:
-4

' -R = RXH iH  + Ry n Jn +  RZH kn (A-l1)

To determine the rate of change of R relative to the (I) coordinates in terms
of the (H) coordinates one must account not only for the changing magnitude
of A, but also for the variation of the unit vectors 1H, iH, kH (which help

represent A)relative to (I). Mathematically:

,-4

dlR - - " dliH d, jH d IkHI - RXH iH + RYH JH + RZH kH + RXH -+ RYH - + RZH
dt dt dt dt

(A- 2)

The first three terms of Equation A-2 define simply how A itself is changing
independent of any moving coordinates. The latter three terms describe the
motion of (H) with respect to (I). It is noteworthy that the I subscript de-
notes differentiation with respect to the (I) coordinates. To elaborate fur-
ther, if I were replaced by H then Equation A-2 would read

-0

d HR
d = R XH nH + RYH iH + RZH k H

since, for purposes of the differentiation, iH, JH, kH would be fixed.

The task remains of obtaining expressions for " " " !L -H' To do

dt dt
this, let us "isolate" the i vector as presented in Figure A-I, and define
some new quantities as given in Figure A-2. Further, let

oa

Fig -A-2
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* i1 (t + At) denotes the position of 'H at time t + At. Clearly, by the defi-

nition of a derivative,

d, 'H in11 (t +At) -'H (t)
Li.n______ _ (A-4)

dt At-40 At

and from the geo-netry of Figure A-2

1 H (t + At) - i H(t) = A 'H t: 'H sin 0 [caAt] (A-5)

we may write

di H sin 0 .At

I dt At

and in the limit

HH -2!=Lim sinSin 00 (A-6)cit At-.O At I =1H

Equation A-6, however, is very reminiscent of the cross-product, namely

± 'H - uxJ- (A-7)

and, if one examines the directions, one can indeed state

d, iH

Since iH is typically representative of each coordinate axis, we also have

H --

(A-9)

* dt
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It is natural to substitute Equations A-8 and A-9 into Equation A-2. This
produces

- RXAH iH +RYH 1H + ZH +RX (cox 'H)

+ H ZH X~j) 'z ( H) (A- 1)

which one may write as

=dA Z+ x R1H+ xRjH+ cxRHkH (A-l11)
dt dt

or finally

d R d dR

dt dt

which, in the text proper, is the basis for Equation 4.
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APPENDIX B

Matrix representation of rotations

Assume the geometry of Figure B-I, where a rotation of-magnitude , has
been performed about the kE axis, producing new vectors i' and j'.

if*

Fig B- I

Clearly the projection of i' on the iE axis is i' cos Cos

(all vectors shown are of unit magnitude). Continuing in like manner for
all possible combinations, one may form the following table:

I, cos , sin 0 0

j -sin cos 0

0 0 1

Here, for example, -sin 0 is to be interpreted as being the projection of j"
on the iE axis-

If we now choose to represent if in terms of its components along E' it,

and kE, we write

Co 0 IE + si 01E 4V 0
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Though matrix multiplication, we can write not only i, but also j and

k', not separately as in Equation B-i, but together in one matrix similar
to the given table. Thus:-4[

Cos 0 sin 0 0 iE]

= [-sin 0 cos 0 0 J E (B-2)

k" 0 0 ' E

or Equation 13 of the text.

It might be mentioned that this development is not intended to be rigorous;
however, it should enable one to obtain these rotation matrices without
difficulty.

Finally, let us complicate the above and now assume that il and j' are
rotating about kE with some angular velocity ,. Clearly W, is directed

along the kE axis, and further, in time At we have the relation

AO" At - - At (B-3)
At

or, in the limit, as At approaches zero

dit (B-4)

Finally, combining both magnitude and direction, we can write

oki. (B-5)

We can do likewise for a rotation about '. obtaining, for example,

,,,1 T (B-6)

where 0 is an angle defined analogously in the i k" plane as Of was de-

fined in the 7 - : plane.

Since angular velocities may be added, we can combine Equations B-5
and B-6 and write

"k " o il (B- 7)

which, in the text, is Equation 22.
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